Une autre option serait de stocker votre les tableaux sous la forme d'un tableau contigu et stockent également leurs tailles ou leurs décalages. Cela nécessite un peu plus de réflexion conceptuelle sur la façon de fonctionner sur vos tableaux, mais un nombre étonnamment élevé d'opérations peuvent être effectuées pour fonctionner comme si vous aviez un tableau bidimensionnel avec des tailles différentes. Dans les cas où ils ne peuvent pas, alors np.split
peut être utilisé pour créer la liste que recommande Calocedrus. Les opérations les plus simples sont les ufunc, car elles ne nécessitent pratiquement aucune modification. Voici quelques exemples:
cells_flat = numpy.array([0, 1, 2, 3, 2, 3, 4])
# One of these is required, it's pretty easy to convert between them,
# but having both makes the examples easy
cell_lengths = numpy.array([4, 3])
cell_starts = numpy.insert(cell_lengths[:-1].cumsum(), 0, 0)
cell_lengths2 = numpy.diff(numpy.append(cell_starts, cells_flat.size))
assert np.all(cell_lengths == cell_lengths2)
# Copy prevents shared memory
cells = numpy.split(cells_flat.copy(), cell_starts[1:])
# [array([0, 1, 2, 3]), array([2, 3, 4])]
numpy.array([x.sum() for x in cells])
# array([6, 9])
numpy.add.reduceat(cells_flat, cell_starts)
# array([6, 9])
[a + v for a, v in zip(cells, [1, 3])]
# [array([1, 2, 3, 4]), array([5, 6, 7])]
cells_flat + numpy.repeat([1, 3], cell_lengths)
# array([1, 2, 3, 4, 5, 6, 7])
[a.astype(float)/a.sum() for a in cells]
# [array([ 0. , 0.16666667, 0.33333333, 0.5 ]),
# array([ 0.22222222, 0.33333333, 0.44444444])]
cells_flat.astype(float)/np.add.reduceat(cells_flat, cell_starts).repeat(cell_lengths)
# array([ 0. , 0.16666667, 0.33333333, 0.5 , 0.22222222,
# 0.33333333, 0.44444444])
def complex_modify(array):
"""Some complicated function that modifies array
pretend this is more complex than it is"""
array *= 3
for arr in cells:
complex_modify(arr)
cells
# [array([0, 3, 6, 9]), array([ 6, 9, 12])]
for arr in numpy.split(cells_flat, cell_starts[1:]):
complex_modify(arr)
cells_flat
# array([ 0, 3, 6, 9, 6, 9, 12])
Le problème est que vous ne pouvez toujours pas utiliser d.mean(), d.flatten(), etc. – episodeyang