De Jeremy's solution sous UNIX Socket FAQ:
#include <stdio.h>
#ifdef WIN32
# include <windows.h>
# include <winsock.h>
# include <iphlpapi.h>
#else
# include <unistd.h>
# include <stdlib.h>
# include <sys/socket.h>
# include <netdb.h>
# include <netinet/in.h>
# include <net/if.h>
# include <sys/ioctl.h>
#endif
#include <string.h>
#include <sys/stat.h>
typedef unsigned long uint32;
#if defined(__FreeBSD__) || defined(BSD) || defined(__APPLE__) || defined(__linux__)
# define USE_GETIFADDRS 1
# include <ifaddrs.h>
static uint32 SockAddrToUint32(struct sockaddr * a)
{
return ((a)&&(a->sa_family == AF_INET)) ? ntohl(((struct sockaddr_in *)a)->sin_addr.s_addr) : 0;
}
#endif
// convert a numeric IP address into its string representation
static void Inet_NtoA(uint32 addr, char * ipbuf)
{
sprintf(ipbuf, "%li.%li.%li.%li", (addr>>24)&0xFF, (addr>>16)&0xFF, (addr>>8)&0xFF, (addr>>0)&0xFF);
}
// convert a string represenation of an IP address into its numeric equivalent
static uint32 Inet_AtoN(const char * buf)
{
// net_server inexplicably doesn't have this function; so I'll just fake it
uint32 ret = 0;
int shift = 24; // fill out the MSB first
bool startQuad = true;
while((shift >= 0)&&(*buf))
{
if (startQuad)
{
unsigned char quad = (unsigned char) atoi(buf);
ret |= (((uint32)quad) << shift);
shift -= 8;
}
startQuad = (*buf == '.');
buf++;
}
return ret;
}
static void PrintNetworkInterfaceInfos()
{
#if defined(USE_GETIFADDRS)
// BSD-style implementation
struct ifaddrs * ifap;
if (getifaddrs(&ifap) == 0)
{
struct ifaddrs * p = ifap;
while(p)
{
uint32 ifaAddr = SockAddrToUint32(p->ifa_addr);
uint32 maskAddr = SockAddrToUint32(p->ifa_netmask);
uint32 dstAddr = SockAddrToUint32(p->ifa_dstaddr);
if (ifaAddr > 0)
{
char ifaAddrStr[32]; Inet_NtoA(ifaAddr, ifaAddrStr);
char maskAddrStr[32]; Inet_NtoA(maskAddr, maskAddrStr);
char dstAddrStr[32]; Inet_NtoA(dstAddr, dstAddrStr);
printf(" Found interface: name=[%s] desc=[%s] address=[%s] netmask=[%s] broadcastAddr=[%s]\n", p->ifa_name, "unavailable", ifaAddrStr, maskAddrStr, dstAddrStr);
}
p = p->ifa_next;
}
freeifaddrs(ifap);
}
#elif defined(WIN32)
// Windows XP style implementation
// Adapted from example code at http://msdn2.microsoft.com/en-us/library/aa365917.aspx
// Now get Windows' IPv4 addresses table. Once again, we gotta call GetIpAddrTable()
// multiple times in order to deal with potential race conditions properly.
MIB_IPADDRTABLE * ipTable = NULL;
{
ULONG bufLen = 0;
for (int i=0; i<5; i++)
{
DWORD ipRet = GetIpAddrTable(ipTable, &bufLen, false);
if (ipRet == ERROR_INSUFFICIENT_BUFFER)
{
free(ipTable); // in case we had previously allocated it
ipTable = (MIB_IPADDRTABLE *) malloc(bufLen);
}
else if (ipRet == NO_ERROR) break;
else
{
free(ipTable);
ipTable = NULL;
break;
}
}
}
if (ipTable)
{
// Try to get the Adapters-info table, so we can given useful names to the IP
// addresses we are returning. Gotta call GetAdaptersInfo() up to 5 times to handle
// the potential race condition between the size-query call and the get-data call.
// I love a well-designed API :^P
IP_ADAPTER_INFO * pAdapterInfo = NULL;
{
ULONG bufLen = 0;
for (int i=0; i<5; i++)
{
DWORD apRet = GetAdaptersInfo(pAdapterInfo, &bufLen);
if (apRet == ERROR_BUFFER_OVERFLOW)
{
free(pAdapterInfo); // in case we had previously allocated it
pAdapterInfo = (IP_ADAPTER_INFO *) malloc(bufLen);
}
else if (apRet == ERROR_SUCCESS) break;
else
{
free(pAdapterInfo);
pAdapterInfo = NULL;
break;
}
}
}
for (DWORD i=0; i<ipTable->dwNumEntries; i++)
{
const MIB_IPADDRROW & row = ipTable->table[i];
// Now lookup the appropriate adaptor-name in the pAdaptorInfos, if we can find it
const char * name = NULL;
const char * desc = NULL;
if (pAdapterInfo)
{
IP_ADAPTER_INFO * next = pAdapterInfo;
while((next)&&(name==NULL))
{
IP_ADDR_STRING * ipAddr = &next->IpAddressList;
while(ipAddr)
{
if (Inet_AtoN(ipAddr->IpAddress.String) == ntohl(row.dwAddr))
{
name = next->AdapterName;
desc = next->Description;
break;
}
ipAddr = ipAddr->Next;
}
next = next->Next;
}
}
char buf[128];
if (name == NULL)
{
sprintf(buf, "unnamed-%i", i);
name = buf;
}
uint32 ipAddr = ntohl(row.dwAddr);
uint32 netmask = ntohl(row.dwMask);
uint32 baddr = ipAddr & netmask;
if (row.dwBCastAddr) baddr |= ~netmask;
char ifaAddrStr[32]; Inet_NtoA(ipAddr, ifaAddrStr);
char maskAddrStr[32]; Inet_NtoA(netmask, maskAddrStr);
char dstAddrStr[32]; Inet_NtoA(baddr, dstAddrStr);
printf(" Found interface: name=[%s] desc=[%s] address=[%s] netmask=[%s] broadcastAddr=[%s]\n", name, desc?desc:"unavailable", ifaAddrStr, maskAddrStr, dstAddrStr);
}
free(pAdapterInfo);
free(ipTable);
}
#else
// Dunno what we're running on here!
# error "Don't know how to implement PrintNetworkInterfaceInfos() on this OS!"
#endif
}
int main(int, char **)
{
PrintNetworkInterfaceInfos();
return 0;
}
si INADDR_BROADCAST signifiait jamais qu'il y a longtemps _very_. Je vais demander à l'auteur de RFC 1 quand je le vois ce soir :) Dans la mémoire récente, il a toujours mappé à l'adresse MAC du segment de réseau local. Les diffusions _Directed_ étaient auparavant gérées par les routeurs, mais sont désormais bloquées pour des raisons de sécurité. – Alnitak
Ok, j'ai vérifié (RFC 919) et il semble que la première définition de 255.255.255.255 était "voisins immédiats". Pour une raison quelconque, je croyais que l'ensemble de l'Internet était représenté par 0.0.0.0/0, résultant en réseau = 0.0.0.0 et brdcast = 255.255.255.255. Correction de la réponse – Juliano
ok, content que ce soit corrigé. Maintenant, sur le commentaire sur IPv6, n'oubliez pas qu'une diffusion est sémantiquement équivalente à une multidiffusion TTL 1, sauf qu'elle n'utilise pas de trames de diffusion au niveau de la couche 2. – Alnitak