Ci-dessous vous trouverez le code que je piraté ensemble pour tester les multithread performances de pthreads. Je n'ai pas nettoyé et aucune optimisation n'a été faite; donc le code est un peu brut.
le code pour enregistrer le Mandelbrot calculé défini comme un bitmap est pas à moi, vous pouvez le trouver here
#include <cstdlib> //for atoi
#include <iostream>
#include <iomanip> //for setw and setfill
#include <vector>
#include "bitmap_Image.h" //for saving the mandelbrot as a bmp
#include <pthread.h>
pthread_mutex_t mutexCounter;
int sharedCounter(0);
int percent(0);
int horizPixels(0);
int vertPixels(0);
int maxiter(0);
//doesn't need to be locked
std::vector<std::vector<int> > result; //create 2 dimensional vector
void *DoThread(void *null) {
double curX,curY,xSquare,ySquare,x,y;
int i, intx, inty, counter;
counter = 0;
do {
counter++;
pthread_mutex_lock (&mutexCounter); //lock
intx = int((sharedCounter/vertPixels) + 0.5);
inty = sharedCounter % vertPixels;
sharedCounter++;
pthread_mutex_unlock (&mutexCounter); //unlock
//exit thread when finished
if (intx >= horizPixels) {
std::cout << "exited thread - I did " << counter << " calculations" << std::endl;
pthread_exit((void*) 0);
}
//set x and y to the correct value now -> in the range like singlethread
x = (3.0/horizPixels) * (intx - (horizPixels/1.5));
y = (3.0/vertPixels) * (inty - (vertPixels/2));
curX = x + x*x - y*y;
curY = y + x*y + x*y;
ySquare = curY*curY;
xSquare = curX*curX;
for (i=0; i<maxiter && ySquare + xSquare < 4;i++){
ySquare = curY*curY;
xSquare = curX*curX;
curY = y + curX*curY + curX*curY;
curX = x - ySquare + xSquare;
}
result[intx][inty] = i;
} while (true);
}
int DoSingleThread(const double x, const double y) {
double curX,curY,xSquare,ySquare;
int i;
curX = x + x*x - y*y;
curY = y + x*y + x*y;
ySquare = curY*curY;
xSquare = curX*curX;
for (i=0; i<maxiter && ySquare + xSquare < 4;i++){
ySquare = curY*curY;
xSquare = curX*curX;
curY = y + curX*curY + curX*curY;
curX = x - ySquare + xSquare;
}
return i;
}
void SingleThreaded(std::vector<std::vector<int> >& result) {
for(int x = horizPixels - 1; x != -1; x--) {
for(int y = vertPixels - 1; y != -1; y--) {
//3.0 -> so we always have -1.5 -> 1.5 as the window; (x - (horizPixels/2) will go from -horizPixels/2 to +horizPixels/2
result[x][y] = DoSingleThread((3.0/horizPixels) * (x - (horizPixels/1.5)),(3.0/vertPixels) * (y - (vertPixels/2)));
}
}
}
void MultiThreaded(int threadCount, std::vector<std::vector<int> >& result) {
/* Initialize and set thread detached attribute */
pthread_t thread[threadCount];
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
for (int i = 0; i < threadCount - 1; i++) {
pthread_create(&thread[i], &attr, DoThread, NULL);
}
std::cout << "all threads created" << std::endl;
for(int i = 0; i < threadCount - 1; i++) {
pthread_join(thread[i], NULL);
}
std::cout << "all threads joined" << std::endl;
}
int main(int argc, char* argv[]) {
//first arg = length along horizontal axis
horizPixels = atoi(argv[1]);
//second arg = length along vertical axis
vertPixels = atoi(argv[2]);
//third arg = iterations
maxiter = atoi(argv[3]);
//fourth arg = threads
int threadCount = atoi(argv[4]);
result = std::vector<std::vector<int> >(horizPixels, std::vector<int>(vertPixels,21)); // init 2-dimensional vector
if (threadCount <= 1) {
SingleThreaded(result);
} else {
MultiThreaded(threadCount, result);
}
//TODO: remove these lines
bitmapImage image(horizPixels, vertPixels);
for(int y = 0; y < vertPixels; y++) {
for(int x = 0; x < horizPixels; x++) {
image.setPixelRGB(x,y,16777216*result[x][y]/maxiter % 256, 65536*result[x][y]/maxiter % 256, 256*result[x][y]/maxiter % 256);
//std::cout << std::setw(2) << std::setfill('0') << std::hex << result[x][y] << " ";
}
std::cout << std::endl;
}
image.saveToBitmapFile("~/Desktop/test.bmp",32);
}
bons résultats peuvent être obtenus en utilisant le programme avec les arguments suivants:
mandelbrot 5120 3840 256 3
De cette façon, vous obtiendrez une image de 5 * 1024 de large; 5 * 768 de haut avec 256 couleurs (hélas, vous n'obtiendrez que 1 ou 2) et 3 threads (1 thread principal qui ne fonctionne pas sauf créer les threads de travail, et 2 threads de travail)
Vous avez éveillé mon intérêt! Vous dites que vous avez de l'expérience en tant que chercheur en algorithmes parallèles. Vous pouvez sûrement me donner des problèmes ou des algorithmes intéressants sur lesquels vous avez travaillé? Et oui vous avez raison, les benchmarks ont très peu de sens en eux-mêmes, c'est pourquoi je ne vais pas passer beaucoup de temps dessus – sven
Ça fait longtemps! J'ai essentiellement pris un algorithme séquentiel efficace, et mesuré ses performances d'abord séquentiellement et ensuite contre un non croissant. des CPU. –
(comme dans la version parallélisée ...) –