Nous commençons par définir les matrices de recherche. Je les ai disposés d'une manière qui devrait les rendre plus faciles à vérifier par rapport à une référence, par exemple. http://en.wikipedia.org/wiki/Verhoeff_algorithm.
d5_mult <- matrix(as.integer(c(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 2, 3, 4, 0, 6, 7, 8, 9, 5,
2, 3, 4, 0, 1, 7, 8, 9, 5, 6,
3, 4, 0, 1, 2, 8, 9, 5, 6, 7,
4, 0, 1, 2, 3, 9, 5, 6, 7, 8,
5, 9, 8, 7, 6, 0, 4, 3, 2, 1,
6, 5, 9, 8, 7, 1, 0, 4, 3, 2,
7, 6, 5, 9, 8, 2, 1, 0, 4, 3,
8, 7, 6, 5, 9, 3, 2, 1, 0, 4,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0
)), ncol = 10, byrow = TRUE)
d5_perm <- matrix(as.integer(c(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 5, 7, 6, 2, 8, 3, 0, 9, 4,
5, 8, 0, 3, 7, 9, 6, 1, 4, 2,
8, 9, 1, 6, 0, 4, 3, 5, 2, 7,
9, 4, 5, 3, 1, 2, 6, 8, 7, 0,
4, 2, 8, 6, 5, 7, 3, 9, 0, 1,
2, 7, 9, 3, 8, 0, 6, 4, 1, 5,
7, 0, 4, 6, 9, 1, 3, 2, 5, 8
)), ncol = 10, byrow = TRUE)
d5_inv <- as.integer(c(0, 4, 3, 2, 1, 5, 6, 7, 8, 9))
Ensuite, nous allons définir la fonction de vérification et l'essayer avec une entrée de test. J'ai suivi la dérivation dans wikipedia d'aussi près que possible.
p <- function(i, n_i) {
d5_perm[(i %% 8) + 1, n_i + 1] + 1
}
d <- function(c, p) {
d5_mult[c + 1, p]
}
verhoeff <- function(x) {
#split and convert to numbers
digs <- strsplit(as.character(x), "")[[1]]
digs <- as.numeric(digs)
digs <- rev(digs) ## right to left algorithm
## apply algoritm - note 1-based indexing in R
c <- 0
for (i in 1:length(digs)) {
c <- d(c, p(i, digs[i]))
}
d5_inv[c + 1]
}
verhoeff(142857)
## [1] 0
Cette fonction est fondamentalement itérative, chaque itération dépend de la valeur de la précédente. Cela signifie qu'il est peu probable que nous puissions vectoriser dans R, donc si nous voulons vectoriser, nous aurons besoin d'utiliser Rcpp. Cependant, avant de nous tourner vers cela, il est intéressant d'explorer si nous pouvons faire la division initiale plus rapidement. D'abord, nous faisons un peu microbenchmark pour voir si elle est intéressant tracasser:
library(microbenchmark)
digits <- function(x) {
digs <- strsplit(as.character(x), "")[[1]]
digs <- as.numeric(digs)
rev(digs)
}
microbenchmark(
digits(142857),
verhoeff(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## digits(142857) 11.30 12.01 12.43 12.85 28.79 100
## verhoeff(142857) 32.24 33.81 34.66 35.47 95.85 100
On dirait qu'il! Sur mon ordinateur, verhoeff_prepare()
représente environ 50% du temps d'exécution. Un peu de recherche sur stackoverflow révèle une autre approche pour transformer un number into digits:
digits2 <- function(x) {
n <- floor(log10(x))
x %/% 10^(0:n) %% 10
}
digits2(12345)
## [1] 5 4 3 2 1
microbenchmark(
digits(142857),
digits2(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## digits(142857) 11.495 12.102 12.468 12.834 79.60 100
## digits2(142857) 2.322 2.784 3.358 3.561 13.69 100
digits2()
est beaucoup plus rapide que digits()
mais il a un impact limité sur l'exécution ensemble.
verhoeff2 <- function(x) {
digs <- digits2(x)
c <- 0
for (i in 1:length(digs)) {
c <- d(c, p(i, digs[i]))
}
d5_inv[c + 1]
}
verhoeff2(142857)
## [1] 0
microbenchmark(
verhoeff(142857),
verhoeff2(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## verhoeff(142857) 33.06 34.49 35.19 35.92 73.38 100
## verhoeff2(142857) 20.98 22.58 24.05 25.28 48.69 100
Pour le rendre encore plus rapide, nous pourrions essayer C++.
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
int verhoeff3_c(IntegerVector digits, IntegerMatrix mult, IntegerMatrix perm,
IntegerVector inv) {
int n = digits.size();
int c = 0;
for(int i = 0; i < n; ++i) {
int p = perm(i % 8, digits[i]);
c = mult(c, p);
}
return inv[c];
}
verhoeff3 <- function(x) {
verhoeff3_c(digits(x), d5_mult, d5_perm, d5_inv)
}
verhoeff3(142857)
## [1] 3
microbenchmark(
verhoeff2(142857),
verhoeff3(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## verhoeff2(142857) 21.00 22.85 25.53 27.11 63.71 100
## verhoeff3(142857) 16.75 17.99 18.87 19.64 79.54 100
Cela ne donne pas beaucoup d'amélioration. Peut-être que nous pouvons faire mieux si nous passons le nombre de C++ et de traiter les chiffres dans une boucle:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
int verhoeff4_c(int number, IntegerMatrix mult, IntegerMatrix perm,
IntegerVector inv) {
int c = 0;
int i = 0;
for (int i = 0; number > 0; ++i, number /= 10) {
int p = perm(i % 8, number % 10);
c = mult(c, p);
}
return inv[c];
}
verhoeff4 <- function(x) {
verhoeff4_c(x, d5_mult, d5_perm, d5_inv)
}
verhoeff4(142857)
## [1] 3
microbenchmark(
verhoeff2(142857),
verhoeff3(142857),
verhoeff4(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## verhoeff2(142857) 21.808 24.910 26.838 27.797 64.22 100
## verhoeff3(142857) 17.699 18.742 19.599 20.764 81.67 100
## verhoeff4(142857) 3.143 3.797 4.095 4.396 13.21 100
Et nous obtenons un coup d'oeil: verhoeff4()
est environ 5 fois plus rapide que verhoeff2()
.
Très bien! Je trouve une accélération similaire. Envelopper le dernier lapply dans un as.numeric garantit qu'un vecteur est renvoyé plutôt qu'une liste. – James
@James: Utiliser 'sapply' plutôt que' lapply' le fera pour vous (sans avoir besoin de 'as.numeric'). –