Tal,
Vous pouvez utiliser R et le paquet XML
pour ce faire, mais (putain) qui est un peu HTML mal formé que vous essayez d'analyser. En fait, dans la plupart des cas, vous voudriez utiliser la fonction readHTMLTable()
, which is covered in this previous thread. Cependant, compte tenu de ce langage hideux, nous devrons utiliser le package RCurl
pour extraire le code HTML brut et créer des fonctions personnalisées pour l'analyser.Ce problème comporte deux volets:
- obtenir tous les URLS du génome de la page Web de base (http://gtrnadb.ucsc.edu/) en utilisant la fonction
getURLContent()
dans le paquet RCurl
et un peu de magie regex :-)
- Prenez ensuite la liste des URLS et grattez les données que vous recherchez, puis collez-les dans un
data.frame
.
Alors, va ici ...
library(RCurl)
### 1) First task is to get all of the web links we will need ##
base_url<-"http://gtrnadb.ucsc.edu/"
base_html<-getURLContent(base_url)[[1]]
links<-strsplit(base_html,"a href=")[[1]]
get_data_url<-function(s) {
u_split1<-strsplit(s,"/")[[1]][1]
u_split2<-strsplit(u_split1,'\\"')[[1]][2]
ifelse(grep("[[:upper:]]",u_split2)==1 & length(strsplit(u_split2,"#")[[1]])<2,return(u_split2),return(NA))
}
# Extract only those element that are relevant
genomes<-unlist(lapply(links,get_data_url))
genomes<-genomes[which(is.na(genomes)==FALSE)]
### 2) Now, scrape the genome data from all of those URLS ###
# This requires two complementary functions that are designed specifically
# for the UCSC website. The first parses the data from a -structs.html page
# and the second collects that data in to a multi-dimensional list
parse_genomes<-function(g) {
g_split1<-strsplit(g,"\n")[[1]]
g_split1<-g_split1[2:5]
# Pull all of the data and stick it in a list
g_split2<-strsplit(g_split1[1],"\t")[[1]]
ID<-g_split2[1] # Sequence ID
LEN<-strsplit(g_split2[2],": ")[[1]][2] # Length
g_split3<-strsplit(g_split1[2],"\t")[[1]]
TYPE<-strsplit(g_split3[1],": ")[[1]][2] # Type
AC<-strsplit(g_split3[2],": ")[[1]][2] # Anticodon
SEQ<-strsplit(g_split1[3],": ")[[1]][2] # ID
STR<-strsplit(g_split1[4],": ")[[1]][2] # String
return(c(ID,LEN,TYPE,AC,SEQ,STR))
}
# This will be a high dimensional list with all of the data, you can then manipulate as you like
get_structs<-function(u) {
struct_url<-paste(base_url,u,"/",u,"-structs.html",sep="")
raw_data<-getURLContent(struct_url)
s_split1<-strsplit(raw_data,"<PRE>")[[1]]
all_data<-s_split1[seq(3,length(s_split1))]
data_list<-lapply(all_data,parse_genomes)
for (d in 1:length(data_list)) {data_list[[d]]<-append(data_list[[d]],u)}
return(data_list)
}
# Collect data, manipulate, and create data frame (with slight cleaning)
genomes_list<-lapply(genomes[1:2],get_structs) # Limit to the first two genomes (Bdist & Spurp), a full scrape will take a LONG time
genomes_rows<-unlist(genomes_list,recursive=FALSE) # The recursive=FALSE saves a lot of work, now we can just do a straigh forward manipulation
genome_data<-t(sapply(genomes_rows,rbind))
colnames(genome_data)<-c("ID","LEN","TYPE","AC","SEQ","STR","NAME")
genome_data<-as.data.frame(genome_data)
genome_data<-subset(genome_data,ID!="</PRE>") # Some malformed web pages produce bad rows, but we can remove them
head(genome_data)
La trame de données résultant contient sept colonnes liées à chaque entrée du génome: ID, la longueur, le type, la séquence, la chaîne et le nom. La colonne de nom contient le génome de base, ce qui était ma meilleure estimation pour l'organisation des données. Voici ce qu'il ressemble:
head(genome_data)
ID LEN TYPE AC SEQ
1 Scaffold17302.trna1 (1426-1498) 73 bp Ala AGC at 34-36 (1459-1461) AGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGGGTTTTCCA
2 Scaffold20851.trna5 (43038-43110) 73 bp Ala AGC at 34-36 (43071-43073) AGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGGGTTCTCCA
3 Scaffold20851.trna8 (45975-46047) 73 bp Ala AGC at 34-36 (46008-46010) TGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGGGTTCTCCA
4 Scaffold17302.trna2 (2514-2586) 73 bp Ala AGC at 34-36 (2547-2549) GGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACAGGGATCGATGCCCGGGTTCTCCA
5 Scaffold51754.trna5 (253637-253565) 73 bp Ala AGC at 34-36 (253604-253602) CGGGGGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGGGTCCTCCA
6 Scaffold17302.trna4 (6027-6099) 73 bp Ala AGC at 34-36 (6060-6062) GGGGAGCTAGCTCAGATGGTAGAGCGCTCGCTTAGCATGCGAGAGGtACCGGGATCGATGCCCGAGTTCTCCA
STR NAME
1 .>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>>>>>.......<<<<<<<<<<<.. Spurp
2 .>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>>>>>.......<<<<<<<<<<<.. Spurp
3 .>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>>>>>.......<<<<<<<<<<<.. Spurp
4 >>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>.>>>.......<<<.<<<<<<<<. Spurp
5 .>>>>>>..>>>>........<<<<.>>>>>.......<<<<<.....>>>>>.......<<<<<<<<<<<.. Spurp
6 >>>>>>>..>>>>........<<<<.>>>>>.......<<<<<......>>>>.......<<<<.<<<<<<<. Spurp
J'espère que cela aide, et merci pour le petit défi amusant R dimanche après-midi!
@Tal, une question, si je peux: est-ce légal? Et si oui, ne serait-il pas plus simple de demander à UCSC un accès régulier à sa base de données? –
Salut Tal, essayez de les laisser tomber une ligne quand même. Vous pourriez les trouver assez accommodant. Ils peuvent même ne pas être conscients que les gens veulent utiliser les données comme vous le souhaitez. Peut-être qu'ils seront intéressés à fournir ce que vous voulez? – user246211