Vous pouvez « tricher » et utiliser une méthode numérique itérative pour cela. Prenez tous les points au départ, puis boucle à travers eux dans des positions « au hasard », les éloignant l'un de l'autre proportionnellement à le besoin distance. Cela va préférer certains points, mais en prenant une moyenne des mouvements avant de les appliquer, l'application de la moyenne éliminera ce problème. C'est un algorithme O (n²), mais très simple à implémenter et à comprendre. Dans l'exemple 2-d ci-dessous, l'erreur est de < < 10%, bien qu'elle puisse ne pas se comporter si bien si les distances données sont irréalistes.
C++ Exemple:
#include <conio.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DAMPING_FACTOR 0.99f
class point
{
public:
float x;
float y;
public:
point() : x(0), y(0) {}
};
// symmetric matrix with distances
float matrix[5][5] = {
{ 0.0f, 4.5f, 1.5f, 2.0f, 4.0f },
{ 4.5f, 0.0f, 4.0f, 3.0f, 3.5f },
{ 1.5f, 4.0f, 0.0f, 1.0f, 5.0f },
{ 2.0f, 3.0f, 1.0f, 0.0f, 4.5f },
{ 4.0f, 3.5f, 5.0f, 4.5f, 0.0f }
};
int main(int argc, char** argv)
{
point p[5];
for(unsigned int i = 0; i < 5; ++i)
{
p[i].x = (float)(rand()%100)*0.1f;
p[i].y = (float)(rand()%100)*0.1f;
}
// do 1000 iterations
float dx = 0.0f, dy = 0.0f, d = 0.0f;
float xmoves[5], ymoves[5];
for(unsigned int c = 0; c < 1000; ++c)
{
for(unsigned int i = 0; i < 5; ++i) xmoves[i] = ymoves[i] = 0.0f;
// iterate across each point x each point to work out the results of all of the constraints in the matrix
// collect moves together which are slightly less than enough (DAMPING_FACTOR) to correct half the distance between each pair of points
for(unsigned int i = 0; i < 5; ++i)
for(unsigned int j = 0; j < 5; ++j)
{
if(i==j) continue;
dx = p[i].x - p[j].x;
dy = p[i].y - p[j].y;
d = sqrt(dx*dx + dy*dy);
dx /= d;
dy /= d;
d = (d - matrix[i][j])*DAMPING_FACTOR*0.5f*0.2f;
xmoves[i] -= d*dx;
ymoves[i] -= d*dy;
xmoves[j] += d*dx;
ymoves[j] += d*dy;
}
// apply all at once
for(unsigned int i = 0; i < 5; ++i)
{
p[i].x += xmoves[i];
p[i].y += ymoves[i];
}
}
// output results
printf("Result:\r\n");
for(unsigned int i = 0; i < 5; ++i)
{
for(unsigned int j = 0; j < 5; ++j)
{
dx = p[i].x - p[j].x;
dy = p[i].y - p[j].y;
printf("%f ", sqrt(dx*dx + dy*dy));
}
printf("\r\n");
}
printf("\r\nDesired:\r\n");
for(unsigned int i = 0; i < 5; ++i)
{
for(unsigned int j = 0; j < 5; ++j)
{
printf("%f ", matrix[i][j]);
}
printf("\r\n");
}
printf("Absolute difference:\r\n");
for(unsigned int i = 0; i < 5; ++i)
{
for(unsigned int j = 0; j < 5; ++j)
{
dx = p[i].x - p[j].x;
dy = p[i].y - p[j].y;
printf("%f ", abs(sqrt(dx*dx + dy*dy) - matrix[i][j]));
}
printf("\r\n");
}
printf("Press any key to continue...");
while(!_kbhit());
return 0;
}
Je n'ai aucune idée comment votre matrice ressemble ou ce que vous essayez vraiment de faire. Pourriez-vous reformuler la question? – Mecki